Strojové učení II

Deep Feedforward Networks

Institute of Information Theory and Automation of the AS CR

Cost Function

- Training data: $(x, y) \sim \hat{p}(x, y)$
- NN represents a function $f(x ; \theta)$
- NN outputs $f(x ; \theta)$ are not direct predictions of y
- You define $q(y \mid x ; \theta)$
- ML principle give us the cost function as $-\log q(y \mid x ; \theta)$
- NN provides parameters (e.g. mean) of $q(y \mid x ; \theta)$

Conditional Log-likelihood

- Empirical distribution of training data $(x, y) \sim \hat{p}(x, y)$

$$
(\mathbb{X}, \mathbb{Y})=\left\{\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)\right\}
$$

$$
\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} q(\mathbb{Y} \mid \mathbb{X}, \boldsymbol{\theta})
$$

$$
=\arg \max _{\boldsymbol{\theta}} \sum_{i=1}^{m} \log q\left(y^{(i)} \mid x^{(i)}, \boldsymbol{\theta}\right)
$$

$$
\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} \mathbb{E}_{(x, y) \sim \hat{p}(x, y)} \log q(y \mid x, \boldsymbol{\theta})
$$

Example - Gaussian Model

- Training data distribution: $p(x, y)=p(y \mid x) p(x)$
- Estimator of $\mathrm{y}: ~ f(x ; \theta)$
- Model distribution: $q(y \mid x) \equiv N\left(y \mid f(x ; \theta), \sigma^{2}\right)$

$$
\begin{gathered}
\hat{\theta}=\arg \min _{\theta} \mathbb{E}_{p(x, y)}[-\log q(y \mid f(x ; \theta))] \\
L(\theta)=\int\left[\int(y-f(x ; \theta))^{2} p(y \mid x) d y\right] p(x) d x+c \\
\frac{\partial L}{\partial \theta} \propto \mathbb{E}_{p(x)}\left[\left(\mathbb{E}_{p(y \mid x)}[y]-f(x ; \theta)\right) \times \frac{\partial f}{\partial \theta}\right]=0 \\
f(x ; \hat{\theta})=\mathbb{E}_{p(y \mid x)}[y]
\end{gathered}
$$

Linear Regression

- Training data: $\quad p(x, y) \rightarrow\left\{\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(N)}, y^{(N)}\right)\right\}$
- Linear estimator of $\mathrm{y}: ~ f(x)=w x+b \quad \theta=\{w, b\}$
- Model distribution: $\quad q(y \mid x) \equiv N\left(y \mid f(x ; \theta), \sigma^{2}\right)$

$$
\begin{aligned}
& \hat{\theta}=\arg \min _{\theta} \mathbb{E}_{p(x, y)}[-\log q(y \mid f(x ; \theta))] \\
& \hat{\theta}=\arg \min _{\theta} \frac{1}{2 \sigma^{2}} \sum_{i}\left(y^{(i)}-f\left(x^{(i)} ; \theta\right)\right)^{2}+\mathrm{c} \\
& \arg \min _{w, b} \frac{1}{2 \sigma^{2}} \sum_{i}\left(y^{(i)}-w x^{(i)}-b\right)^{2}+\mathrm{c}
\end{aligned}
$$

- Closed-form solution

Example - Laplace Model

- Training data distribution: $p(x, y)=p(y \mid x) p(x)$
- Estimator of $\mathrm{y}: f(x ; \theta)$
- Model distribution: $q(y \mid x) \equiv$ Laplace $(y \mid f(x ; \theta), \gamma)$

$$
\begin{gathered}
\hat{\theta}=\arg \min _{\theta} \mathbb{E}_{p(x, y)}[-\log q(y \mid f(x ; \theta))] \\
L(\theta)=\int\left[\int|y-f(x ; \theta)| p(y \mid x) d y\right] p(x) d x+c \\
\frac{\partial L}{\partial \theta} \propto \mathbb{E}_{p(x)}\left[\int \operatorname{sign}(y-f(x ; \theta)) p(y \mid x) d y \times \frac{\partial f}{\partial \theta}\right]=0 \\
f(x ; \hat{\theta})=m \ldots \text { median: } P(y \leq m \mid x)=P(y \geq m \mid x)
\end{gathered}
$$

Feedforward Network

Input Layer Hidden Layer Output Layer

Output Units

- Linear
- Sigmoid
- Softmax
- Softplus

Linear Unit

- Affine transformation with no nonlinearity

$$
y=W x+b
$$

- e.g. predict mean of a Gaussian distribution

Sigmoid

- Values in range $(0,1)$

Sigmoid output unit

- Predicting probability
- Ideal for Bernoulli output distributions

Input Layer Output Layer Sigmoid

Softmax

- Generalization of sigmoid
- Multi-class classification

$$
\begin{gathered}
z=W x+b \\
\operatorname{softmax}(\mathbf{z})_{i}=\frac{\exp \left(z_{i}\right)}{\sum_{j} \exp \left(z_{j}\right)} \\
0<\operatorname{softmax}(\mathbf{z})_{i}<1 \quad \sum_{i} \operatorname{softmat}(\mathbf{z})_{i}=1
\end{gathered}
$$

Softmax

Softmax without temperature ($\mathrm{T}=1$)

$$
\frac{\exp \left(z_{i}\right)}{\sum_{j} \exp \left(z_{j}\right)}
$$

Softmax with temperature

$$
\frac{\exp \left(z_{i} / T\right)}{\sum_{j} \exp \left(z_{j} / T\right)}
$$

Temperature: 0.7

Increase in entropy
Low entropy

Softplus

- Non-negative values

Hidden Units

- Linear units with non-linear activation functions
- Activation functions:
- Logistic Sigmoid
- Hyperbolic Tangent
- Rectification
old days
current

Linear Layers

- Multiple linear layers <=> single linear layer

$$
\begin{aligned}
y_{1}=W_{1} x+b_{1} \\
y_{2}=W_{2} y_{1}+b_{2}
\end{aligned}
$$

$$
y_{N}=W_{N} y_{N-1}+b_{N}=W_{N}\left(W_{N-1}(\ldots)+b_{N-1}\right)+b_{N}
$$

$$
y_{N}=W x+b
$$

- We need a non-linear step in hidden units to go beyond!

Sigmoid

Region of saturation

- Cons: $\quad \sigma(0) \neq 0 \quad$ shifted
$\sigma^{\prime}(0)=0.25<1$
vanishing gradient for small and large inputs

Hyperbolic Tangent

Region of saturation

- Pros: $\sigma(0)=0 \quad$ symmetric

$$
\sigma^{\prime}(0)=1
$$

- Cons: vanishing gradient for small and large inputs

$$
\sigma(z)=\max \{0, z\}
$$

- Pros: derivatives in the positive domain are all 1
- Cons: output is not symmetric (internal covariate shift) "dead neuron" problem

Leaky ReLU

$\sigma(z)=\max \{0, z\}+0.01 \min \{0, z\}$

- Pros: same as ReLU but solves "dead neuron" problem

Parametric ReLU

$$
\sigma(z)=\max \{0, z\}+a \min \{0, z\}
$$

- Pros: same as Leaky ReLU but parameterizes the leakage

GELU

- Gaussian Error Linear Units

- Used in Transformers
- Similar: Swish, Mish

Maxout Units

- Generalization of rectified linear units

- Can learn piecewise linear convex functions

Quantitative Evaluation

- Classification performance vs. baseline with ReLU
- No non-linearity
- Tanh / sigmoid

Same number of - Maxout
parameters with performance increase

- More parameters

Non-linearity conclusion

- Saturating non-linearities should be avoided
- ReLU is a standard choice for deep architectures
- Limited gains can be achieved with different types of nonlinearities

Universal Approximator

- Hornik [1989], Cybenko [1989]
+Proves existence
- Does not say how to learn
- No bounds for the capacity

Effect of Activation Functions

- ReLU

Godoy, Deep Learning with Pytorch, 2021

Effect of Activation Functions

- PReLU

Godoy, Deep Learning with Pytorch, 2021

Adding Dimensions

Effect of Activation Functions

- More hidden units - only 10 epochs to learn

Effect of Activation Functions

- More layers - only 15 epochs to learn

Training Networks

- Find network parameters $\hat{\theta}$ (unit weights, biases, ...) such that $\hat{\theta}=\arg \min _{\theta} J(\theta)$

$$
J(\theta)=\sum_{(x, y) \sim \hat{p}(x, y)}-\log q(y \mid f(x ; \theta))
$$

- Gradient descent is practically the only used minimization strategy
- Fast way to find gradients ==> back-propagation

Chain Rule N-D

- N-D function composition: $y=g(f(\mathbf{x}))$

$$
\begin{aligned}
& y=g(\mathbf{z}): \mathbb{R}^{n} \rightarrow \mathbb{R} \\
& \quad \mathbf{z}=f(\mathbf{x}): \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
\end{aligned}
$$

- Jacobian:

$$
\begin{aligned}
& \nabla_{\mathbf{x}} f=\left[\begin{array}{cccc}
\frac{d z_{1}}{d x_{1}} & \frac{d z_{1}}{d x_{2}} & \cdots & \frac{d z_{1}}{d x_{m}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{d z_{n}}{d x_{1}} & \frac{d z_{n}}{d x_{2}} & \ldots & \frac{d z_{n}}{d x_{m}}
\end{array}\right] \\
& \nabla_{\mathbf{z}} g=\left[\begin{array}{llll}
\frac{d y}{d z_{1}} & \frac{d y}{d z_{2}} & \ldots & \frac{d y}{d z_{n}}
\end{array}\right]
\end{aligned}
$$

$$
\frac{d y}{d \mathbf{x}}=\nabla_{\mathbf{z}} g \cdot \nabla_{\mathbf{x}} f
$$

General Chain Rule

$$
\begin{aligned}
& z^{(P)}\left(\ldots z^{(p)}\left(z^{(1)}\left(z^{(0)}\right)\right) \ldots\right) \\
& \frac{d z^{(P)}}{d z^{(0)}}=\prod_{p=0}^{P-1} \nabla_{z^{(P-p-1)}} z^{(P-p)}
\end{aligned}
$$

Computational Graph

Back-Propagation

Back-Propagation

Back-Propagation

Complex Computational Graphs

PytorchViz

Learning vs Optimization

- Maximizing Performance \neq Minimizing cost function
- Cost function

$$
J(\theta)=\mathbb{E}_{(x, y) \sim p_{\text {data }}} L(f(x, \theta), y)
$$

- Instead, Empirical risk

$$
J^{*}(\theta)=\sum_{i} L\left(f\left(x^{(i)}, \theta\right), y^{(i)}\right)
$$

- Many minima, which one is better?
- Reaching a minimum is often not a goal

Batch vs Minibatch Gradient Methods

- Infeasible to calculate the derivative over the whole dataset

$$
\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i \in \mathbb{D}} \quad \nabla_{\theta} J^{*}(\theta)=\sum_{i \in \mathbb{D}} \nabla_{\theta} L\left(f\left(x^{(i)}, \theta\right), y^{(i)}\right)
$$

- Instead, derivatives over random data subsets (minibatches)
$\mathbb{B}=\{$ random set from $\mathbb{D}\}$

$$
\nabla_{\theta} J^{*}(\theta) \approx \sum_{i \in \mathbb{B}} \nabla_{\theta} L\left(f\left(x^{(i)}, \theta\right), y^{(i)}\right)
$$

- Parallel implementation on GPUs
- Small minibatches \rightarrow good generalization properties

Stochastic Gradient Descent

1. Initialization: parameters $\theta^{(0)}$, learning rate ϵ_{t}
2. Sample a minibatch $\mathbb{B} \subset \mathbb{D}$
3. Compute gradient $g=\frac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}} \nabla_{\theta} L\left(f\left(x^{(i)}, \theta^{(t)}\right), y^{(i)}\right)$
4. Apply update

$$
\theta^{(t+1)}=\theta^{(t)}-\epsilon_{t} g
$$

5. Repeat 2-4 until stopping criterion is met

SGD

- Sufficient condition to guarantee convergence of SGD

$$
\sum_{t=1}^{\infty} \epsilon_{t}=\infty \quad \sum_{t=1}^{\infty} \epsilon_{t}^{2}<\infty
$$

- Choice of the LR is critical! $\theta^{(t+1)}=\theta^{(t)}-\epsilon_{t} g$

Lipschitz Constant

- $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq K\left\|x_{1}-x_{2}\right\| \quad \forall x_{1}, x_{2}$

$$
f(x)=\sin (x) \cos (4 x)
$$

$$
\sup _{\mathbb{N}} f^{\prime}=4
$$

$$
\mathbb{R}
$$

$$
K=4
$$

- Learning rate: $0<\epsilon<2 / K$

SGD with Momentum

- Adds momentum to the gradient

$$
\begin{array}{ll}
g=\frac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}} \nabla_{\theta} L\left(f\left(x^{(i)}, \theta^{(t)}\right), y^{(i)}\right) \\
\text { Momentum factor } \\
v^{(t+1)}=\alpha \stackrel{v}{t}_{(t)}^{(t)}+g & \text { Velocity (momentum } \\
\theta^{(t+1)}=\theta^{(t)}-\epsilon v^{(t+1)} & \text { of unit mass) } \\
& \text { Learning rate }
\end{array}
$$

- For a constant gradient

$$
\lim _{t \rightarrow \infty} v^{(t)}=\frac{g}{1-\alpha}
$$

SGD with Nesterov Momentum (NAG)

- Calculate gradient in the predicted future position

$$
\begin{aligned}
& g=\frac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}} \nabla_{\theta} L\left(f\left(x^{(i)}, \theta^{(t)}-\epsilon v^{(t)}\right), y^{(i)}\right) \\
& v^{(t+1)}=\alpha v^{(t)}+g \\
& \theta^{(t+1)}=\theta^{(t)}-\epsilon v^{(t+1)}
\end{aligned}
$$

Adaptive Learning Rate

- Slow progress in gently sloped directions, because

$$
\theta^{(t+1)}=\theta^{(t)}-\epsilon_{t} g
$$

- How to adapt LR, so the progress in all directions is approximately the same?
- AdaGrad
- AdaDelta
- RMSProp
- Adam

RMSProp

$$
\begin{aligned}
& g=\frac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}} \nabla_{\theta} L\left(f\left(x^{(i)}, \theta^{(t)}\right), y^{(i)}\right) \\
& r^{(t+1)}=\beta r^{(t)}+(1-\beta) g^{2} \\
& v^{(t+1)}=\alpha v^{(t)}+\frac{1}{\delta+\sqrt{r^{(t+1)}}} g \\
& \theta^{(t+1)}=\theta^{(t)}-\epsilon v^{(t+1)} \\
& \text { weighententially moving } \\
& \text { average of } \mathrm{g}^{2}
\end{aligned}
$$

Adam

$$
\left.\begin{array}{rl}
g & =\frac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}} \nabla_{\theta} L\left(f\left(x^{(i)}, \theta^{(t)}\right), y^{(i)}\right) \\
s^{(t+1)}=\beta_{1} s^{(t)}+\left(1-\beta_{1}\right) g & \begin{array}{l}
\text { Exponentially } \\
\text { weighted moving } \\
\text { average of } g \text { and } g^{2}
\end{array} \\
r^{(t+1)}=\beta_{2} r^{(t)}+\left(1-\beta_{2}\right) g^{2} & \begin{array}{l}
\text { Bias correction for } \\
\text { correct initialization }
\end{array} \\
\hat{s}=\frac{s}{1-\beta_{1}^{t+1}} \quad \hat{r}=\frac{r}{1-\beta_{2}^{t+1}} & \hat{s}^{(1)}=g \quad \hat{r}^{(1)}=g^{2}
\end{array}\right] \quad \begin{aligned}
& \\
& \theta^{(t+1)}=\theta^{(t)}-\epsilon \frac{\hat{s}}{\delta+\sqrt{\hat{r}}}
\end{aligned}
$$

Default values: $\beta_{1}=0.9, \beta_{2}=0.999, \delta=10^{-8}$

https://imgur.com/a/Hqolp

Learning Rate Scheduler

- Linear decay
- Reduce on Plateau
- Cyclic LR

${ }_{0.0010}$ CyclicLR - mode $=$ exp_range

Solver Popularity

Solver takeaway

- No clear winner
- Adam (RMSprop, NAG) remains a viable choice for many problems
- Instead of trying a new solver, re-tuning and re-running your favorite one seems to be the best choice.

Vanishing\&Exploding Gradients

- Common in very deep nets

$$
\begin{gathered}
J(\theta)=z^{(P)}\left(\ldots z^{(p)}\left(z^{(2)}\left(z^{(1)}(x)\right)\right) \ldots\right) \\
z^{(p)}(x)=W x \quad p=1, \ldots, P \\
J(\theta)=W W \ldots W x=W^{P} x=V \Lambda^{P} V^{-1} x
\end{gathered}
$$

$\lim _{p \rightarrow \infty} \lambda_{i}^{p}$ Eigenvalues<1 go to zero
$\lim _{p \rightarrow \infty} \quad$ Eigenvalues >1 go to infinity

- Proper initialization of weights
- Gradient clipping
- Batch normalization

Initialization

- Main principle: "break symmetry" - - > random initialization

Activations

Gradients

- But we should also adapt the variance of random initialization

Initialization

- Kaiming initilization for layers with ReLU activation

- Glorot initialization for layers with tanh activation

Gradient Clipping

- Good for exploding gradients

Value clipping

Norm clipping

Batch Normalization

$R e L U+N(0, \sigma=0.1)+B N$

- Extra Slides....

Derivation of softmax

- Consider two-class problem
- z_0, z_1: network output (not probabilities)

- S_0 ... probability of class 0
- S_1 ... probability of class 1
- GT labels: $\left\{t^{i}\right\}_{i=1}^{N} \quad$ e.g. $=\{0,1,1, \ldots\}$

$$
\left(z_{0}^{i}, z_{1}^{i}\right) \quad i=1, \ldots, N
$$

Derivation of softmax

- Maximize entropy $s_{0}^{i} \log s_{0}^{i}+s_{1}^{i} \log s_{1}^{i}$
- Subject to:

$$
\begin{aligned}
& s_{0}^{i}, s_{1}^{i} \geq 0 \\
& s_{0}^{i}+s_{1}^{i}=1 \\
& \sum_{i} s_{0}^{i} z_{0}^{i}=\sum_{\left\{i \mid t^{i}=0\right\}} z_{0}^{i} \equiv N \mu_{0} \\
& \sum_{i} s_{1}^{i} z_{1}^{i}=\sum_{\left\{i \mid t^{i}=1\right\}} z_{1}^{i} \equiv N \mu_{1} \\
& L=\sum_{i} s_{0}^{i} \log s_{0}^{i}+s_{1}^{i} \log s_{1}^{i}+ \\
& \lambda_{0}\left(\mu_{0}-s_{0}^{i} z_{0}^{i}\right)+\lambda_{1}\left(\mu_{1}-s_{1}^{i} z_{1}^{i}\right)+ \\
& \\
& \lambda\left(s_{0}^{i}+s_{1}^{i}-1\right)
\end{aligned}
$$

Derivation of softmax

$$
\begin{aligned}
L=\sum_{i} & s_{0}^{i} \log s_{0}^{i}+s_{1}^{i} \log s_{1}^{i}+ \\
& \lambda_{0}\left(\mu_{0}-s_{0}^{i} z_{0}^{i}\right)+\lambda_{1}\left(\mu_{1}-s_{1}^{i} z_{1}^{i}\right)+ \\
& \lambda\left(s_{0}^{i}+s_{1}^{i}-1\right)
\end{aligned}
$$

$$
\frac{\partial L}{\partial s_{0}}=\log s_{0}+1-\lambda_{0} z_{0}+\lambda=0
$$

$$
\frac{\partial L}{\partial s_{1}}=\log s_{1}+1-\lambda_{1} z_{1}+\lambda=0
$$

$$
s_{0}=e^{\lambda_{0} z_{0}-\lambda-1}
$$

$$
s_{1}=e^{\lambda_{1} z_{1}-\lambda-1}
$$

Derivation of softmax

$s_{0}=e^{\lambda_{0} z_{0}-\lambda-1}$
$s_{1}=e^{\lambda_{1} z_{1}-\lambda-1}$

$$
s_{0}+s_{1}=1
$$

$$
e^{-\lambda-1}=\frac{1}{e^{\lambda_{0} z_{0}}+e^{\lambda_{1} z_{1}}}
$$

$$
s_{0}=\frac{e^{\lambda_{0} z_{0}}}{e^{\lambda_{0} z_{0}}+e^{\lambda_{1} z_{1}}}
$$

$$
s_{1}=\frac{e^{\lambda_{1} z_{1}}}{e^{\lambda_{0} z_{0}}+e^{\lambda_{1} z_{1}}}
$$

Derivation of sigmoid

- One-class problem: Bernoulli distribution

$$
\begin{aligned}
& z_{1}=0 \\
& s_{0}=\frac{e^{\lambda_{0} z_{0}}}{e^{\lambda_{0} z_{0}}+1}=\frac{1}{1+e^{-\lambda_{0} z_{0}}}=\sigma\left(z_{0}\right)
\end{aligned}
$$

Example - Gaussian Model

- Training data distribution: $p(x, y)=p(y \mid x) p(x)$
- Estimator of $\mathrm{y}: ~ f(x \mid \theta)$
- Model distribution: $q(y \mid x) \equiv N\left(y \mid f(x ; \theta), \sigma^{2}\right)$

$$
\begin{gathered}
\hat{f}(x)=\arg \min _{f(x)} \mathbb{E}_{p(x, y)}[-\log q(y \mid f(x))] \\
L=\int\left[\int(y-f(x))^{2} p(y \mid x) d y\right] p(x) d x+c \\
\frac{\partial L}{\partial f} \propto \int(y-f(x)) p(y \mid x) d y=0 \\
\hat{f}(x)=\int y p(y \mid x) d y=\mathbb{E}_{p(y \mid x)}[y]
\end{gathered}
$$

Linear Regression

- Training data: $\quad p(x, y) \rightarrow\left\{\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(N)}, y^{(N)}\right)\right\}$
- Linear estimator of $\mathrm{y}: ~ f(x)=w x+b \quad \theta=\{w, b\}$
- Model distribution: $\quad q(y \mid x) \equiv N\left(y \mid f(x), \sigma^{2}\right)$

$$
\begin{aligned}
& \hat{f}(x)=\arg \min _{f(x)} \mathbb{E}_{p(x, y)}[-\log q(y \mid f(x))] \\
& \hat{f}(x)=\arg \min _{f} \frac{1}{2 \sigma^{2}} \sum_{i}\left(y^{(i)}-f\left(x^{(i)}\right)\right)^{2}+\mathrm{c} \\
& \arg \min _{w, b} \frac{1}{2 \sigma^{2}} \sum_{i}\left(y^{(i)}-w x^{(i)}-b\right)^{2}+\mathrm{c}
\end{aligned}
$$

- Closed-form solution

Example - Laplace Model

- Training data distribution: $p(x, y)=p(y \mid x) p(x)$
- Estimator of y : $f(x)$
- Model distribution: $\quad q(y \mid x) \equiv$ Laplace $(y \mid f(x), \gamma)$

$$
\begin{gathered}
\hat{f}(x)=\arg \min _{f(x)} \mathbb{E}_{p(x, y)}[-\log q(y \mid f(x))] \\
L=\int\left[\int|y-f(x)| p(y \mid x) d y\right] p(x) d x+c \\
\frac{\partial L}{\partial f} \propto \int \operatorname{sign}(y-f(x)) p(y \mid x) d y=0 \\
\hat{f}(x)=m \quad \ldots \text { median: } \quad P(y \leq m \mid x)=P(y \geq m \mid x)
\end{gathered}
$$

Example - Bernoulli Model

- Training data distribution: $p(x, y)=p(y \mid x) p(x), \quad y \in\{0,1\}$
- Estimator of $\mathrm{y}: \mathrm{f}(\mathrm{x})$
- Model distribution: $q(y \mid x) \equiv \operatorname{Bernoulli}(y \mid f(x))$

$$
\begin{aligned}
& \hat{f}(x)=\arg \min _{f(x)} \mathbb{E}_{p(x, y)}[-\log q(y \mid f(x))] \\
& L=\int \sum_{y=0}^{1}([y \log f(x)+(1-y) \log (1-f(x))] \\
& \\
& \frac{\partial L}{\partial f}=p(x \mid x)) p(x) d x \\
&=p(x)\left(p(y=1 \mid x) \frac{1}{f(x)}-(1-p(y=1 \mid x)) \frac{1}{1-f(x)}\right) \\
&=0
\end{aligned}
$$

Example - Bernoulli Model

$$
\begin{aligned}
& p(x)\left(p(y=1 \mid x) \frac{1}{f(x)}-(1-p(y=1 \mid x)) \frac{1}{1-f(x)}\right)=0 \\
& \hat{f}(x)=p(y=1 \mid x)=\mathbb{E}_{p(y \mid x)}[y]
\end{aligned}
$$

$$
\mathbb{E}_{p(x)}[\hat{f}(x)]=\int \hat{f}(x) p(x) d x
$$

$$
=\int p(y=1 \mid x) p(x) d x=p(y=1)
$$

Strojové učení II

Regularization

Institute of Information Theory and Automation of the AS CR

Regularization

- Reduce overfitting, improve generalization
- Loss terms
- Parameter Regularization
- Dataset
- Augmentation
- Label Smoothing
- Architecture
- Parameter Tying
- Bagging
- Dropout
- Batch Normalization
- Residual Connections

Parameter Regularization

- Original loss function $J(\theta)$ with regularization $\quad \tilde{J}(\theta)=J(\theta)+\lambda\|\theta\|^{2}$
- L2 norm of parameters is called "Weight Decay"

Position on the curve depends on λ

Unit Ball

$\tilde{J}(\theta)=J(\theta)+\lambda\|\theta\|_{2}^{2}$
Sometimes is better to use explicit constraints

L2-norm

- Sparse solution

Early Stopping

Early stopping

L2-norm regularization

Dataset Augmentation

- Apply random transformation T to inputs
- $\mathrm{T}=\{$ cropping, rotation, scaling, ...\}
- This way we learn a representation invariant to T
- Particularly effective for object recognition
- Other transformations: blur, noise, ...

Noise Robustness

- Injecting noise in
- Inputs
- Outputs (labels)
- Parameters

Noise in Inputs

- Same principle as data augmentation
- Increases invariance (robustness) to noise

Noise in Outputs

- Label smoothing

(a) Hard Label

(b) LS

(c) Ours

0 - airplane	1 - automobile	$2-$ bird	$3-$ cat	$4-\operatorname{deer}$	$5-\operatorname{dog}$	$6-$ frog	$7-$ horse	$8-$ ship

Noise in Parameters

- Adding noise to weights during learning
training data: $(x, y) \sim \hat{p}(x, y)$
loss: $\quad J(\theta)=\mathbb{E}_{p(x, y)}[f(x, \theta)-y]$
with noise: $\tilde{J}(\theta)=\mathbb{E}_{p(x, y)}[f(x, \theta+n)-y] \quad n \sim N(0, \eta \mathbf{I})$
- Similar to a regularized problem:

$$
\tilde{J}(\theta) \sim \mathbb{E}_{p(x, y)}\left[(f(x, \theta)-y)+\eta\left\|\nabla_{\theta} f(x, \theta)\right\|^{2}\right]
$$

Parameter Tying

- Decrease the number of parameters
- Share parameters across layers
- Share parameters across tasks
- By assuming structured W in linear units (e.g. convolution)

$$
y=W x+b
$$

Bagging

- Bootstrap aggregation

- Uncorrelated results: squared error decreases linearly

Can you prove it?

Dropout

- Training: randomly remove connections with the probability p and multiply layer outputs by 1/p
- Evaluation: keep all connections

Regular Connections

Applying Dropout

$$
p=0.5
$$

- In 2D (images) dropout removes channels and not pixels!

Dropout

- Equivalent to bagging with an ensemble of subnets
- Inference on the full network is geometric mean

$$
\hat{p}(y \mid x) \approx \sqrt[d]{\prod_{i=1}^{d} p_{i}(y \mid x)}
$$

Dropout Performance

Batch Normalization

- Standard hidden unit: $\quad y=\sigma(W x+b)$

- Normalize output across the minibatch $\quad y^{\prime}=\frac{y-\bar{y}}{\sqrt{\operatorname{var}(y)+\epsilon}}$

$$
\bar{y}=\frac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}} y^{(i)} \quad \operatorname{var}(y)=\frac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}}\left(y^{(i)}-\bar{y}\right)^{2}
$$

Batch Normalization

- Training: update $\bar{y}, \operatorname{var}(y)$ with every batch
- Evaluation: keep learned statistics $\bar{y}, \operatorname{var}(y)$ (EWMA) from the training phase
- Output of hidden layers have mean=0 and var=1
- Helps to solve Vanishing/Exploding gradients
- In reality BN makes the loss surface smoother!
- Implementation:
- Extra affine transf. param. are learnable: $\gamma * y^{\prime}+\beta$
- Why? - > gradients w.r.t. param. are simpler
- BN before or after the activation function?

BN and loss smoothness

- BN decreases Lipschitz constant of the loss making it more smooth

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq \beta\left\|x_{1}-x_{2}\right\| \quad \forall x_{1}, x_{2}
$$

BN takeaway

- Use BN
- Architectures with LARGE batches
- Mean \& variance stable across batches
- Image classification
- Avoid BN
- Architectures with SMALL batches
- Unstable mean \& variance
- Object detection / Segmentation / Synthesis

Residual Connections

- Not trivial to learn "trivial" identity with nonlinearities.

$$
y=f(x ; \theta) \quad \text { learn } \theta \text { such that } y=x
$$

- Easy if

$$
y=f(x ; \theta)+x
$$

Residual Block

- RC makes the loss surface smoother

(a) ResNet-20, 7.37%

(d) ResNet-20-NS, 8.18%

(b) ResNet-56, 5.89\%

(e) ResNet-56-NS, 13.31%

(c) ResNet-110, 5.79%

(f) ResNet-110-NS, 16.44%

Li et al., Visualizing the loss landscape, 2018

