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Strojové učení II

Deep Feedforward Networks
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Cost Function

● Training data: 
● NN represents a function
● NN outputs are not direct predictions of y
● You define 
● ML principle give us the cost function as
● NN provides parameters (e.g. mean) of    
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Conditional Log-likelihood

● Empirical distribution of training data
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Example – Gaussian Model

● Training data distribution:
● Estimator of y: 
● Model distribution:
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Linear Regression

● Training data:
● Linear estimator of y:  
● Model distribution:

● Closed-form solution
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Example – Laplace Model

● Training data distribution:
● Estimator of y: 
● Model distribution:

… median:
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Feedforward Network
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Output Units

● Linear
● Sigmoid
● Softmax
● Softplus
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Linear Unit

● Affine transformation with no nonlinearity

● e.g. predict mean of a Gaussian distribution
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Sigmoid

● Values in range (0,1)
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Sigmoid output unit

● Predicting probability
● Ideal for Bernoulli output distributions
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Softmax

● Generalization of sigmoid 
● Multi-class classification 
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Softmax

Low entropy High entropy
Increase in entropy

with increase in T

Softmax without temperature (T=1) Softmax with temperature
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Softplus

● Non-negative values
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Hidden Units

● Linear units with non-linear activation functions
● Activation functions:

– Logistic Sigmoid

– Hyperbolic Tangent

– Rectification

old days

current
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Linear Layers

● Multiple linear layers <=> single linear layer

● We need a non-linear step in hidden units to go beyond!
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Sigmoid

● Cons: shifted

vanishing gradient for small and large inputs 

Region of saturation
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Hyperbolic Tangent

● Pros: symmetric  

● Cons: vanishing gradient for small and large inputs 

Region of saturation
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ReLU

● Pros: derivatives in the positive domain are all 1 
● Cons: output is not symmetric (internal covariate shift)

“dead neuron” problem

No saturation
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Leaky ReLU

● Pros: same as ReLU but solves “dead neuron” problem
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Parametric ReLU

● Pros: same as Leaky ReLU but parameterizes the leakage
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GELU

● Gaussian Error Linear Units

● Used in Transformers
● Similar: Swish, Mish Hedrycks, Gimpel: GAUSSIAN ERROR LINEAR UNITS 

https://arxiv.org/pdf/1606.08415.pdf
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Maxout Units

● Generalization of rectified linear units

● Can learn piecewise linear convex functions

z0

z1

z3

z2

Maxout

Maxout
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Quantitative Evaluation

● Classification performance vs. baseline with ReLU

Mishkin et.al., Systematic evaluation of CNN advances on the ImageNet, CoRR 2016

Performance drop:
● No non-linearity
● Tanh / sigmoid

Performance increase 
● Maxout
● More parameters

Same number of 
parameters with
performance increase
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Non-linearity conclusion

● Saturating non-linearities should be avoided
● ReLU is a standard choice for deep architectures
● Limited gains can be achieved with different types of non-

linearities
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Universal Approximator

● Hornik [1989], Cybenko [1989]

 

+Proves existence
- Does not say how to learn
- No bounds for the capacity

http://su2.utia.cas.cz/files/lectures/animated_figs/sample_fit_optim.gif
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Effect of Activation Functions

● ReLU

What does an affine 
transform preserve?

Godoy, Deep Learning with Pytorch, 2021
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Effect of Activation Functions

● PReLU

Godoy, Deep Learning with Pytorch, 2021
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Adding Dimensions

Godoy, Deep Learning with Pytorch, 2021
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Effect of Activation Functions

● More hidden units – only 10 epochs to learn 

10 10

w0
Tz

w1
Tz

Godoy, Deep Learning with Pytorch, 2021
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Effect of Activation Functions

● More layers – only 15 epochs to learn

Godoy, Deep Learning with Pytorch, 2021



32

Training Networks

● Find network parameters (unit weights, biases, …) such 
that

● Gradient descent is practically the only used minimization 
strategy

● Fast way to find gradients ==>  back-propagation
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Chain Rule N-D

● N-D function composition:

● Jacobian: 

x z y
m n 1
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General Chain Rule
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Computational Graph

Why are x, y missing 
in the graph?
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Back-Propagation

keep x

keep z(2)
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Back-Propagation

keep x

keep z(2)
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Back-Propagation

keep x

keep z(2)
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Back-Propagation

keep x

keep z(2)
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Complex Computational Graphs

PytorchViz

https://github.com/szagoruyko/pytorchviz
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Learning vs Optimization

● Maximizing Performance  Minimizing cost function
● Cost function

● Instead, Empirical risk

● Many minima, which one is better?
● Reaching a minimum is often not a goal.
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Batch vs Minibatch Gradient Methods

● Infeasible to calculate the derivative over the whole dataset

● Instead, derivatives over random data subsets (minibatches)

– Parallel implementation on GPUs

– Small minibatches → good generalization properties 
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Stochastic Gradient Descent

1. Initialization: parameters , learning rate 

2. Sample a minibatch 

3. Compute gradient

4. Apply update

5. Repeat 2-4 until stopping criterion is met
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● Sufficient condition to guarantee convergence of SGD

● Choice of the LR is critical!

SGD

optimal too largetoo small

http://su2.utia.cas.cz/files/lectures/animated_figs/LR0005_optim.gif
http://su2.utia.cas.cz/files/lectures/animated_figs/LR01_optim.gif
http://su2.utia.cas.cz/files/lectures/animated_figs/LR039_optim.gif
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●

● Learning rate:

Lipschitz Constant

http://su2.utia.cas.cz/files/lectures/animated_figs/lipschitz_optim.gif
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SGD with Momentum

● Adds momentum to the gradient

● For a constant gradient

Momentum factor

Velocity (momentum 
of unit mass)

Learning rate
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48
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SGD with Nesterov Momentum (NAG)

● Calculate gradient in the predicted future position

SGD

NAG
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Adaptive Learning Rate

● Slow progress in gently sloped directions, because

● How to adapt LR, so the progress in all directions is 
approximately the same?

● AdaGrad
● AdaDelta
● RMSProp
● Adam
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RMSProp

Exponentially 
weighted moving 
average of g2

Element-wise
operations
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Adam

Default values: 

Exponentially 
weighted moving 
average of g and g2

Bias correction for 
correct initialization
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https://imgur.com/a/Hqolp

https://imgur.com/a/Hqolp
http://su2.utia.cas.cz/files/lectures/animated_figs/contours_evaluation_optimizers_optim.gif
http://su2.utia.cas.cz/files/lectures/animated_figs/saddle_point_evaluation_optimizers_optim.gif
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Learning Rate Scheduler

● Linear decay
● Reduce on Plateau
● Cyclic LR
● ...
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Solver Popularity

Schmidt et al.,”Benchmarking Deep Learning Optimizers”, ICML 2021.
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Solver takeaway

● No clear winner
● Adam (RMSprop, NAG) remains a viable choice for many 

problems

● Instead of trying a new solver, re-tuning and re-running your 
favorite one seems to be the best choice.

Schmidt et al.,”Benchmarking Deep Learning Optimizers”, ICML 2021.
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Vanishing&Exploding Gradients

● Common in very deep nets

Eigenvalues<1 go to zero

Eigenvalues>1 go to infinity

● Proper initialization of weights
● Gradient clipping
● Batch normalization
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Initialization

● Main principle: “break symmetry” - - > random initialization 

● But we should also adapt the variance of random initialization
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Initialization

● Kaiming initilization for layers with ReLU activation

● Glorot initialization for layers with tanh activation

G
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Gradient Clipping

● Good for exploding gradients

Value clipping Norm clipping
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Batch Normalization
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● Extra Slides….
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Derivation of softmax

● Consider two-class problem
● z_0, z_1: network output (not probabilities) 

● S_0 ... probability of class 0
● S_1 ... probability of class 1

● GT labels: 

softmax
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Derivation of softmax

● Maximize entropy
● Subject to:
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Derivation of softmax
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Derivation of softmax
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Derivation of sigmoid

● One-class problem: Bernoulli distribution
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Example – Gaussian Model

● Training data distribution:
● Estimator of y: 
● Model distribution:
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Linear Regression

● Training data:
● Linear estimator of y:  
● Model distribution:

● Closed-form solution
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Example – Laplace Model

● Training data distribution:
● Estimator of y: f(x)
● Model distribution:

… median:
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Example – Bernoulli Model

● Training data distribution:
● Estimator of y: f(x)
● Model distribution:
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Example – Bernoulli Model

… Bernoulli mean



1

Strojové učení II

Regularization
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Regularization

● Reduce overfitting, improve generalization
● Loss terms

– Parameter Regularization
● Dataset

– Augmentation

– Label Smoothing
● Architecture

– Parameter Tying

– Bagging

– Dropout

– Batch Normalization

– Residual Connections Li et al., NIPS 2018



3

Parameter Regularization

● Original loss function

with regularization

● L2 norm of parameters is called “Weight Decay”

Position on the curve 
depends on λ
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Unit Ball

Sometimes is better to use explicit constraints

L2 norm L1 norm
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L2-norm
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L1-norm

● Sparse solution
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Early Stopping

Early stopping L2-norm regularization
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Dataset Augmentation

● Apply random transformation T to inputs
● T = {cropping, rotation, scaling,…}
● This way we learn a representation invariant to T
● Particularly effective for object recognition
● Other transformations: blur, noise, …
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Noise Robustness

● Injecting noise in 

– Inputs

– Outputs (labels)

– Parameters
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Noise in Inputs

● Same principle as data augmentation 
● Increases invariance (robustness) to noise
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Noise in Outputs

● Label smoothing

Zhang et al., Delving deep into label smoothing, TIP 2021

https://arxiv.org/pdf/2011.12562.pdf
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Noise in Parameters

● Adding noise to weights during learning

training data:

loss:

with noise:

● Similar to a regularized problem:
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Parameter Tying

● Decrease the number of parameters 

– Share parameters across layers

– Share parameters across tasks

– By assuming structured W in linear units (e.g. convolution)
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Bagging

● Bootstrap aggregation

● Uncorrelated results: squared error decreases linearly

Result 1

Result 2

Result 1

Result 3

Input Aggregate
(Vote,Mean)

Can you prove it?
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Dropout

● Training: randomly remove connections with the probability p

and multiply layer outputs by 1/p
● Evaluation: keep all connections

● In 2D (images) dropout removes channels and not pixels!

p = 0.5

Why channels and not 
pixels?
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Dropout

● Equivalent to bagging with an ensemble of subnets
● Inference on the full network is geometric mean
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Dropout Performance
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Batch Normalization

● Standard hidden unit:

● Normalize output across the minibatch

Normalize
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Batch Normalization

● Training: update with every batch
● Evaluation: keep learned statistics  (EWMA) from 

the training phase  
● Output of hidden layers have mean=0 and var=1

● Helps to solve Vanishing/Exploding gradients
● In reality BN makes the loss surface smoother!

● Implementation:

– Extra affine transf. param. are learnable:  

– Why? - > gradients w.r.t. param. are simpler

– BN before or after the activation function? That is the question.

Exponential
Weighted 
Moving
Average
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BN and loss smoothness

● BN decreases Lipschitz constant of the loss

making it more smooth

Santurkar et al., CoRR 2018

https://arxiv.org/pdf/1805.11604.pdf
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BN takeaway

● Use BN

– Architectures with LARGE batches

– Mean & variance stable across batches

– Image classification
● Avoid BN

– Architectures with SMALL batches

– Unstable mean & variance

– Object detection / Segmentation / Synthesis
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Residual Connections

● Not trivial to learn “trivial” identity with nonlinearities.
 learn such that

● Easy if

● RC makes the loss surface smoother 
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Li et al., Visualizing the loss landscape, 2018

https://arxiv.org/pdf/1712.09913.pdf
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