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Strojové učení II

Convolutional NN
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PyTorch Tensors
● N-D array

● PyTorch convention: N x C x H x W
● N … number of images (mini-batch size)
● C … number of channels (or filters) 
● H … height
● W … width 

<== FEATURES
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2D Convolution

Implemented in 
frameworks as 
correlation.
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2D Convolution
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Padding
● Different output sizes – valid, same, full
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Striding
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Dilation
● Dilation = 2

2 4

6 6
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● “Same” convolution with zero padding and no striding

● Convolution animations

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
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Properties of Convolution Unit 
● Linear operation

● Sparse interactions
● Parameter sharing
● Equivariance to translation



33

Convolution with Multiple Channels
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Convolution with Multiple Channels
● What if we have more filters?
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Receptive Field
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Pooling
● Parameters: Kernel size, Stride, Operation (max, avg,…)
● Example with kernel size = 2x2, stride=[2,2], operation=max

● invariant to small translation
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Typical Convolutional Layer
● Infinitely strong prior: 

– Convolution: force local 
interactions equivariant to 
translation

– Pooling: invariant to small 
translation 
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Baseline architecture

● Resolution: 
● Width: 
● Depth: 

Convolutional + ReLU

Convolution kernel

Scaling dimensions



39

Pooling
● Pooling/Stride is also very practical --> saves memory

Convolutional + ReLU

Pooling



1

Strojové učení II

Convolutional NN
Architectures
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Image Classification
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LeNet-5
● LaCun 1998
● MNIST dataset – classification of handwritten digits

What are the filter sizes?

Convolutional + ReLU

Avg Pooling

Fully Connected + ReLU

Fully Connected + Softmax

1 6

6 16

16

84
10

120

32 28

14 10
5 1
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Loss
● Multinoulli distribution
● Training set:

● network prediction:
● CE Loss: 
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Vanishing Gradient: BCE vs MSE
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AlexNet

Convolutional + ReLU

Max Pooling

Fully Connected + ReLU

Fully Connected + Softmax

3

96

256

27

384

4096

1000

224
55

384 256

13 13 13
6

4096

11

5
3 3 3

256

Stride 
of 4

Krizhevsky et al., NIPS 2012
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VGG Very Deep Net
● Improvements over AlexNet
● More layers + smaller convolutional filters (3x3)

# parameters

AlexNet
block

receptive 
field

Convolution
+ non-linearity

5x5 filter

25 5x5

Convolution
+ non-linearity

VGG-16
block

3x3 filter 3x3 3x3

27 7x7

Convolution
+ non-linearity

Convolution
+ non-linearity

Larger receptive field 
with same # 
parameters
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● VGG-16

VGG

Simonyan & Zisserman, ICLR 2014
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How deep can we go?
● What happens if we keep increasing the depth of VGG?

● A (too) deep network is too hard to optimize!

He et al.: Deep Residual Learning for Image Recognition, CVPR 2016

https://arxiv.org/pdf/1512.03385.pdf


10

ResNet
● Residual connections

Residual Block

Global Avg Pooling

Conv with stride 2

Fully Connected + Softmax

3

64

128
256

1000

512

3

1024

+

Conv BN Activ. Conv BN Activ.

3 3
3

He et al.: Deep Residual Learning for Image Recognition, CVPR 2016
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ResNet
● Residual connections

● We can go now very deep!
● ResNet variants:

– 34, 50, 101, 152 layers

64

128
256

1000

512

3

1024

What is the benefit of 
Global Avg Pooling?

3

3 3
3



12Bianco et al., IEEE Access, 2018

ImageNet Classification Banchmark

EfficientNet-B0

EfficientNet-B4 EfficientNet-B6
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MobileNet
● Computationally less demanding, fixed-point arithmetic

3

1

C1 C1 C2>C1

ReLU6

Compare the number of 
parameters when the 
standard convolution is used.



14

MobileNet v2

● Expand 
● Filter in the higher dimensional space
● Project back
● Add 
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EfficientNet

● Optimal resolution, width and depth - > Compound Scaling

Bottleneck Residual Block
(MobileNet v2)
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Visualization of Deep CNN Features

Low level features Mid level features High level features

1st conv layer 2nd conv layer 3rd conv layer
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Recent Advances
● Inception module
● Convolutional Block Attention module
● Transformers – self-attention (CoAtNet)



18

Object Detection
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Two-Stage Detector

RoI 
pooling

Classifier

Backbone Net
feature extractor

VGG, ResNet,...

Region
Proposal

- Traditional region growing methods
- RPN 

1st stage 2nd stage
Girshick et al., R-CNN, 2015
Girshick, Fast R-CNN, 2015
Ren et al., Faster R-CNN, 2016

https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1504.08083.pdf
https://arxiv.org/pdf/1506.01497.pdf
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One-Stage Detector

Backbone Net
feature extractor

VGG, ResNet,...

- B regions (x,y,w,h) for every location
- P(classes + background) for every location
- Objectness (prediction of IoU)

4B, B, #classes 

● Class imbalance: background regions more common than other!

Non-Maximum
 Suppression

Redmon et al., YOLO, CVPR 2016
Liu et al., SSD, ECCV 2017
Lin et al., RetinaNet, 2018

https://arxiv.org/pdf/1506.02640v5.pdf
https://arxiv.org/pdf/1512.02325.pdf
https://arxiv.org/pdf/1708.02002.pdf
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YOLO
● You Only Live/Look Once 

Redmon et al., YOLO, CVPR 2016

https://arxiv.org/pdf/1506.02640v5.pdf
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YOLO loss

j-th bounding box predictor in cell i 
is “responsible” for the prediction.

otherwise
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Semantic Segmentation
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U-Net

Ronneberger et al., U-Net, 2015

https://arxiv.org/pdf/1505.04597.pdf
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Autoencoder
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Data by Stephanie Heinrich

Image Reconstruction - Denoising
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Supervised Learning

Degraded image

Clean image
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• Minimizing
• Remember MAP?  

Minimizing the Squared Error
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Content-aware Restoration
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Limitations

• GT must be obtainable!
• Training data must sample all visual features of interest!

• Can we do if we have degraded data only? 
(self-supervised)

• YES! But it works only for white noise.
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Self-Supervised Learning

• Noise2Void assumption

Observed image

Clear image

Noise

Krull, Buchholz, and Jug 2019
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Noise2Void

• CNN learns identity 
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Noise2Void

 Blind spot
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Blind Spot Implementation

Input Target
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Face Recognition
● Softmax (classification) is not appropriate 
● One-shot learning

– Recognize a person even if we have a single photo.
– No retraining if a new person enters the db.

● Metric learning problem
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Contrastive Loss
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Triplet Loss
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● Softmax

● ArcFace


