Strojové učení II

Convolutional NN

Institute of Information Theory and Automation of the AS CR

• N-D array

- PyTorch convention: N x C x H x W
 - N ... number of images (mini-batch size)
 - C ... number of channels (or filters) <== FEATURES
 - H ... height
 - W ... width

2D Convolution

$$[u * h](x, y) = \int \int u(s, t)h(x - s, y - t)dsdt$$

Single Channel Image

5	0	8	7	8	1
1	9	5	0	7	7
6	0	2	4	6	6
9	7	6	6	8	4
8	3	8	5	1	3
7	2	7	0	1	0

Region

5	0	8	
1	9	5	х
6	0	2	

Filter							
0	0	0					
0	1	0					
0	0	0					

Filter

0

1

0

1 x 1 x 3 x 3

0

0

0

0

0

0

*

=

Implemented in frameworks as correlation.

Ζ	D
	-

2D Convolution

Single Channel Image 7 8 *

1 x 1 x 6 x 6

Filter

1 x 1 x 3 x 3

1 x 1 x 4 x 4

Padding

• Different output sizes - valid, same, full

Replication Padding

5	5	0	8	7	8	1	1
5	5	0	8	7	8	1	1
1	1	9	5	0	7	7	7
6	6	0	2	4	6	6	6
9	9	7	6	6	8	4	4
8	8	3	8	5	1	3	3
7	7	2	7	0	1	0	0
7	7	2	7	0	1	0	0

Reflection Padding

Circular Padding

0	7	2	7	0	1	0	7
1	5	0	8	7	8	1	5
7	1	9	5	0	7	7	1
6	6	0	2	4	6	6	6
4	9	7	6	6	8	4	9
3	8	3	8	5	1	3	8
0	7	2	7	0	1	0	7
1	5	0	8	7	8	1	5

Striding

Single Channel Image

5	0	8	7	8	1
1	9	5	0	7	7
6	0	2	4	6	6
9	7	6	6	8	4
8	3	8	5	1	3
7	2	7	0	1	0

*

Filter					
0	0	0			
0	1	0			
0	0	0			
		-			

1 x 1 x 3 x 3

1 x 1 x 2 x 2

1 x 1 x 6 x 6

Dilation

• Dilation = 2

Single Channel Image							
5	0	8	7	8	1		
1	9	5	0	7	7		
6	0	2	4	6	6		
9	7	6	6	8	4		
8	3	8	5	1	3		
7	2	7	0	1	0		

*

Filter						
0	0	0				
0	1	0				
0	0	0				
1 x 1 x 3 x 3						

1 x 1 x 6 x 6

• "Same" convolution with zero padding and no striding

Single Channel Padded Image 0 i 7 4 6

1 x 1 x (6+2) x (6+2)

*

1 x 1 x 3 x 3

Result

-19	22	-20	-12	-17	11
16	-30	-1	23	-7	-14
-14	24	7	-2	1	-7
-15	-10	-1	-1	-15	1
-13	13	-11	-5	13	-7
-18	9	-18	13	-3	4

1 x 1 x 6 x6

Convolution animations

•

Properties of Convolution Unit

• Linear operation $h * x \equiv Wx$

5	0	8	7	8	1
1	9	5	0	7	7
6	0	2	4	6	6
9	7	6	6	8	4
8	3	8	5	1	3
7	2	7	0	1	0

- Sparse interactions
- Parameter sharing
- Equivariance to translation

Convolution with Multiple Channels

*

3-Channel Image

1 x 3 x 6 x 6

3-Channel Filter

1 x 1 x 4 x 4

Convolution with Multiple Channels

• What if we have more filters?

Receptive Field

Pooling

- Parameters: Kernel size, Stride, Operation (max, avg,...)
- Example with kernel size = $2x^2$, stride=[2,2], operation=max

invariant to small translation

Typical Convolutional Layer

- Infinitely strong prior:
 - Convolution: force local interactions equivariant to translation
 - Pooling: invariant to small translation

Pooling

Pooling/Stride is also very practical --> saves memory

Strojové učení II

1

Convolutional NN Architectures

Institute of Information Theory and Automation of the AS CR

Image Classification

LeNet-5

- LaCun 1998
- MNIST dataset classification of handwritten digits

Loss

- Multinoulli distribution
- Training set: $(x^{(m)}, y^{(m)})$

$$y^{(m)} \in \mathbb{R}^C$$
 $y_i^{(m)} = \begin{cases} 1 & \text{if } x^{(m)} \text{ is from the i-th class} \\ 0 & \text{elsewhere} \end{cases}$

- network prediction: $\hat{y}^{(m)}$
- CE Loss: $L = -\sum_{m \in \mathbb{B}} \sum_{i=1}^C y_i^{(m)} \log(\hat{y}_i^{(m)})$

Vanishing Gradient: BCE vs MSE

AlexNet

Krizhevsky et al., NIPS 2012

VGG Very Deep Net

- Improvements over AlexNet
- More layers + smaller convolutional filters (3x3)

• VGG-16

How deep can we go?

• What happens if we keep increasing the depth of VGG?

• A (too) deep network is too hard to optimize!

ResNet

- We can go now very deep!
- ResNet variants:
 - 34, 50, 101, 152 layers

What is the benefit of Global Avg Pooling?

ImageNet Classification Banchmark

Bianco et al., IEEE Access, 2018

MobileNet

• Computationally less demanding, fixed-point arithmetic

MobileNet v2

- Expand
- Filter in the higher dimensional space
- Project back
- Add

EfficientNet

• Optimal resolution, width and depth - > Compound Scaling

Visualization of Deep CNN Features

Low level features

Mid level features

High level features

1st conv layer

2nd conv layer

3rd conv layer

Recent Advances

- Inception module
- Convolutional Block Attention module
- Transformers self-attention (CoAtNet)

Object Detection

Two-Stage Detector

\square	
\Box	

Backbone Net feature extractor

VGG, ResNet,...

• Class imbalance: background regions more common than other!

Redmon et al., YOLO, CVPR 2016 Liu et al., SSD, ECCV 2017 Lin et al., RetinaNet, 2018

YOLO

You Only Live/Look Once

YOLO loss

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ &+ \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ &+ \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ &+ \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ &+ \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \\ \mathbb{1}_{ij}^{\text{obj}} \text{ is "responsible" for the prediction.} \end{split}$$

 $\mathbb{1}_{ij}^{\mathrm{noobj}}$ otherwise

22

Semantic Segmentation

Autoencoder

Image Reconstruction - Denoising

Data by Stephanie Heinrich

Supervised Learning

Minimizing the Squared Error

- Minimizing $\|u \hat{u}\|^2$
- Remember MAP?

 $\hat{u} \approx \mathbb{E}_{p(u|z)}[u]$ $\hat{u} \approx \max p(u|z)$

Content-aware Restoration

Limitations

- GT must be obtainable!
- Training data must sample all visual features of interest!
- Can we do if we have degraded data only? (self-supervised)
- YES! But it works only for white noise.

Self-Supervised Learning

Noise2Void assumption

Krull, Buchholz, and Jug 2019

Noise2Void

Noise2Void

Blind Spot Implementation

Face Recognition

- Softmax (classification) is not appropriate
- One-shot learning
 - Recognize a person even if we have a single photo.
 - No retraining if a new person enters the db.
- Metric learning problem

 $L(A, PN, y) = yd(A, PN) + (1 - y) \max(0, m - d(A, PN))$

Triplet Loss

 $L(A, \boldsymbol{P}, \boldsymbol{N}) = \max(0, m + d(A, \boldsymbol{P}) - d(A, \boldsymbol{N}))$

• Softmax

$$-\frac{1}{N} \sum_{i=1}^{N} log \frac{e^{W_{y_{i}}^{T}x_{i}+b_{y_{i}}}}{\sum_{j=1}^{n} e^{W_{j}^{T}x_{i}+b_{j}}}$$

 x_i denotes the deep feature of the i-th sample, belonging to the y_i -th class. W_j^T denotes the j-th column of the weight W and b_j is the bias term. The batch size and the class number are N and n, respectively.

• ArcFace

$$-\frac{1}{N}\sum_{i=1}^{N}\log\frac{e^{s*(\cos(\theta_{y_i}+m))}}{e^{s*(\cos(\theta_{y_i}+m))}+\sum_{j=1,j\neq y_i}^{n}e^{s*\cos\theta_j}}$$

where θ_j is the angle between the weight W_j and the feature x_i s - feature scale, the hypersphere radius

m - angular margin penalty