Strojové učení II

Sequences

Institute of Information Theory and Automation of the AS CR

1

• Input:

- sequence = an **ordered** set of data points
- Output:
 - single label: RNN
 - sequence (of different length): encoder-decoder model
- Application: time series, Natural Language Processing (NLP)

Recurrent Neural Network (RNN)

• Basic RNN

Unfolded RNN

RNN cell

$$t_h = W_h h_{t-1} + b_h$$
$$h_t = \tanh(t_h + t_x)$$
$$t_x = W_i x_t + b_i$$

Problem: Long-term dependencies

Multiple Time Scales

- Long-term dependencies are weak in the basic RNN cell.
- Solution:
 - Skip connections through time
 - Long Short-Term Memory (LSTM)
 - Gated Recurrent Unit (GRU)

Discuss cases: i=1, f = 0; i=0, f = 1;

Godoy, Deep Learning with Pytorch, 2019

GRU

Sequence-to-Sequence

- The European economic zone \rightarrow la zona económica europea
 - Word order
 - the el / la: To which word do we pay attention?

Attention

- V... values [D x L], D... hidden dim., L... input seq. length
- K... keys [D x L]
- q... query

$$c = V\left(K^T q\right)_{\rm ssmax}$$

$$c = \sum_{i} \operatorname{softmax}\left(\frac{\langle q, k_i \rangle}{\sqrt{D}}\right) v_i$$

What is D and L in the figure?

Godoy, Deep Learning with Pytorch, 2019

Self-Attention

 Forget RNN! h00 h01 h10 h11 Encoder Compute V, K, Q from the input sequence $X = [x_1, \ldots, x_L]$ FF FF Self-Attention C10 C11 C00 C01 Context Attention $c = V \left(\underline{K}^T \underline{q} \right)_{\text{ssmax}}$ a00 a01 a10 a11 Alignments w^Th Self-Attention w^Th w^Th w^Th (w[⊤]h $C = [W_v X] \left([W_k X]^T [W_q X] \right)_{\text{ssmax}}$ x00 ×01 ×10 ×11

RNN vs Self-Attention

Self-Attention

Convolution vs Self-Attention

$$C = [W_v X] \left([W_k X]^T [W_q X] \right)_{\text{ssmax}}$$
$$c_i = \sum_j \langle q_i, k_j \rangle v_j$$

Convolution:

$$c_i = \sum_j \frac{h_{i-j}}{x_j} x_j$$

$$W_v = W_k = W_q = I$$
$$C = [X] ([X]^T [X])_{ssmax}$$
$$c_i = \sum_j \langle x_i, x_j \rangle x_j$$

Convolution vs Self-Attention

Convolution vs Self-Attention

Local and fixed during inference

Global and variable during inference

The Transformer

- Multi-Headed Self- and Cross-Attention
- Masked Multi-Headed Self-Attention
- Layer Normalization
- Linear + ReLU
- Positional Encoding \bigcirc
- Residual Connection +
- Dropouts

Embedding

Byte pair encoding \rightarrow tokens 50257 tokens in GPT-3

king – man + woman = queen

Mikolov et al., Word2Vec, 2013

Positional Encoding

- Unique encoding for each position
- Encoding distance between two positions consistent
- Generalize to any sequence length

Kazemnejad: Transformer Architecture: The Positional Encoding

Learned Positional Encoding

• PE Correlation between different positions

Layer Normalization

Multi-headed Self-Attention

Masked Attention

 $i, j = 1, \ldots, L$

Large Language Models

1) Pretraining

- Annotation is a curse
- Task "Predict a next (masked) word in an incomplete sentence."

2) Fine-tuning on a downstream task

- Small annotation dataset
- Reinforcement learning from Human Feedback
- Immitate human preferences Reward Model

```
GPT (OpenAI), BERT (Google),
LLaMA (Meta AI), Titan (Amazon)
```


• Understanding, relations, reasoning

- Long-term Memory facts from the training data
- GPT-3:
 - 175 (x10⁹) billion of parameters
- GPT-4:
 - 1 700 billion
- Human brain:
 - 700 000 billion

Context in Prompting

Představ si, že Tom má matku Mary. Jak se jmenuje syn Mary?

Syn Mary by se jmenoval Tom, protože v úvodu tvé otázky jsi řekl, že Tom má matku Mary.

Self-Attention can infer opposite implication using the context.

Long-term memory in **FF** of does not have this ability.

Jak se jmenuje syn Mary Lee Pfeiffer?

Bohužel nemám informace o synovi Mary Lee Pfeiffer, protože moje znalosti sahají pouze do září 2021, a nemám aktuální informace o soukromých osobách a jejich rodinných vztazích. Pro aktuální informace o této osobě byste mohl zkusit prověřit dostupné veřejné zdroje nebo vyhledat aktuální zpravodajské články.

Jak se jmenuje matka Toma Cruise?

Matka Toma Cruise se jmenuje Mary Lee Pfeiffer.

Training with Human Feedback

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

ಿ Explain the moon landing to a 6 year old

Some people went to the moon...

BBB

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

Explain the moon landing to a 6 year old

B (A) Explain gravity. Explain war.

C Moon is natural People went to satellite of... the moon.

D > C > A = B

D > C > A = B

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Step 3

the dataset.

The policy

generates

an output.

calculates a

reward for

the output.

the policy using PPO.

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from Write a story about frogs Once upon a time... The reward model The reward is r_k used to update

Attention in Image Processing

- Image Classification & Detection:
 - CBAM (Convolutional Block Attention Module)
 - Dual Attention (Spatial and Channel)
 - ViT (Vision Transformer)
 - CoAtNet (Convolution with Self-Attention)

Vision Transformer (ViT)

Dosovitskiy et al., An Image is Worth 16x16 Words, ICLR 2021

Convolutional Block Attention Module

Dual Attention

Fu et al., DANet, 2019

Dual Attention

A. Position attention module

B. Channel attention module

Self-supervised training

- ViT requires a lot of training data
- Pretraining + fine-tuning
- Pretraining methods:
 - Mask Autoencoder (MAE)
 - Self-distillation with no labels (DINO)

Similar to BART pretraining

- Several local views
 - small areas of the original image (0.05 0.4)
 - 96x96 pixels
 - For the student
- Two global views
 - large area of the original image (0.4 1.0)
 - 224x224 pixels
 - Only for the teacher

Avoid collapse: centering and sharpening

Contrastive Language-Image Pretraining

CLIP

