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Strojové učení II

Sequences
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Sequences

● Input: 

– sequence = an ordered set of data points 
● Output: 

– single label: RNN 

– sequence (of different length): encoder-decoder model
● Application: time series, Natural Language Processing (NLP)
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Recurrent Neural Network (RNN)

● Basic RNN ● Unfolded RNN

Godoy, Deep Learning with Pytorch, 2019

https://leanpub.com/pytorch
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RNN cell

Problem: Long-term dependencies

Godoy, Deep Learning with Pytorch, 2019

https://leanpub.com/pytorch
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Multiple Time Scales

● Long-term dependencies are weak in the basic RNN cell.
● Solution:

– Skip connections through time

– Long Short-Term Memory (LSTM)

– Gated Recurrent Unit (GRU)
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LSTM

Discuss cases:
i=1, f = 0;
i=0, f = 1;

Godoy, Deep Learning with Pytorch, 2019

https://leanpub.com/pytorch
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GRU

Godoy, Deep Learning with Pytorch, 2019

● No input gate
● No cell state

https://leanpub.com/pytorch
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Sequence-to-Sequence

● Encoder-Decoder model

● The European economic zone → la zona económica europea

– Word order

– the → el / la: To which word do we pay attention?Godoy, Deep Learning with Pytorch, 2019

https://leanpub.com/pytorch
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Attention

● V… values [D x L], D… hidden dim., L… input seq. length
● K… keys [D x L]
● q… query

What is D and L in 
the figure?

Godoy, Deep Learning with Pytorch, 2019

https://leanpub.com/pytorch
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Self-Attention

● Forget RNN!

Compute V, K, Q from the input 
sequence 

● Attention

● Self-Attention
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RNN vs Self-Attention

RNN Self-Attention

Godoy, Deep Learning with Pytorch, 2019

https://leanpub.com/pytorch
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Convolution vs Self-Attention

Convolution:
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Convolution vs Self-Attention
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Convolution vs Self-Attention

Local and fixed
during inference
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Convolution vs Self-Attention

Local and fixed
during inference
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Convolution vs Self-Attention

Local and fixed
during inference
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Convolution vs Self-Attention

Global and variable 
during inference

Local and fixed
during inference
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The Transformer

Encoder Decoder

● Multi-Headed Self- and 
Cross-Attention

● Masked Multi-Headed 
Self-Attention

● Layer Normalization

● Linear + ReLU

● Positional Encoding

● Residual Connection

● Dropouts

Vaswani et al., Attention is all you need, 2017

https://arxiv.org/abs/1706.03762
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Embedding

Byte pair encoding → tokens

50257 tokens in GPT-3

Paul wants his bank to cash
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Mikolov et al., Word2Vec, 2013
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https://en.wikipedia.org/wiki/Byte_pair_encoding
https://platform.openai.com/tokenizer
https://arxiv.org/abs/1301.3781
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Positional Encoding

● Unique encoding for each position
● Encoding distance between two positions consistent
● Generalize to any sequence length

● Binary code?

Kazemnejad: Transformer Architecture: The Positional Encoding
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https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
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Handcrafted Positional Encoding
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Learned Positional Encoding

● PE Correlation between different positions

Wang, Chen: What do position embeddings learn?, EMNLP 2020

https://arxiv.org/abs/2010.04903


23

Layer Normalization
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Multi-headed Self-Attention
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Large Language Models

1) Pretraining
● Annotation is a curse
● Task - “Predict a next (masked) word in an incomplete sentence.“

2) Fine-tuning on a downstream task
● Small annotation dataset
● Reinforcement learning from Human Feedback
● Immitate human preferences - Reward Model

GPT (OpenAI) , BERT (Google), 

LLaMA (Meta AI), Titan (Amazon) 
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Encoder Decoder

BERT

GPT
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Paul wants his bank to cash
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● Understanding, relations, reasoning

Self-Attention

Paul wants his bank to cach

Self-Attention

Paul wants his bank to cash

Paul wants his bank to cash

Self-Attention

Paul
financial
institution

Paul

bank 
transaction
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financial
institution

Paul
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● Long-term Memory – facts from the training data

● GPT-3: 
– 175 (x109) billion of parameters

● GPT-4: 
– 1 700 billion

● Human brain: 
– 700 000 billion

Feed-Forward Neural Network
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Context in Prompting

Long-term memory in FF 
does not have this ability.

Self-Attention can 
infer opposite 
implication using the 
context.
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Training with Human Feedback

Ouyang et al., Training with Human Feedback, 2022

https://arxiv.org/abs/2203.02155
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Attention in Image Processing

● Image Classification & Detection: 

– CBAM (Convolutional Block Attention Module)

– Dual Attention (Spatial and Channel)

– ViT (Vision Transformer)

– CoAtNet (Convolution with Self-Attention)

https://arxiv.org/pdf/1807.06521.pdf
https://arxiv.org/pdf/1809.02983.pdf
https://arxiv.org/pdf/2010.11929.pdf
https://arxiv.org/pdf/2106.04803.pdf
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Vision Transformer (ViT)

Dosovitskiy et al., An Image is Worth 16x16 Words, ICLR 2021

https://arxiv.org/pdf/2010.11929v2.pdf
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Convolutional Block Attention Module

Woo et al., CBAM, 2018

https://arxiv.org/pdf/1807.06521.pdf
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Dual Attention

Fu et al., DANet, 2019

https://arxiv.org/pdf/1809.02983.pdf
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Dual Attention
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Self-supervised training

● ViT requires a lot of training data

● Pretraining + fine-tuning 

● Pretraining methods:

– Mask Autoencoder (MAE)

– Self-distillation with no labels (DINO)
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MAE

● Similar to BART pretraining

He et al., Masked Autoencoders, 2021
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https://arxiv.org/abs/2111.06377
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MAE
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DINO

Caron et al., DINO, 2021

● Several local views

– small areas of the original 
image (0.05 - 0.4)

– 96x96 pixels

– For the student
● Two global views

– large area of the original 
image (0.4 – 1.0)

– 224x224 pixels

– Only for the teacher

https://arxiv.org/abs/2104.14294
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Avoid collapse: centering and sharpening
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CLIP

● Contrastive Language-Image Pretraining

Radford et al., CLIP, 2021

https://arxiv.org/abs/2103.00020
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