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Strojové učení II

Generative Models
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Supervised vs Unsupervised Learning

Supervised
● Data: (x,y)

x…data, y…label

● Goal: learn function to map

● Examples: classification, 
regression, object detection, 
semantic segmentation, ...

Unsupervised
● Data: x

x...data, no labels!

● Goal: learn hidden 
(underlying) structure of the 
data

● Examples: clustering, 
feature or dimensionality 
reduction, …
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Generative Modeling

● Natural images lie on a manifold

● How to sample from this distribution? 

Input samples
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Generative Modeling

● Take training samples from the data distribution and learn a 
mapping from a simple distribution (e.g. normal) to the data 
distribution such that

Generated samplesInput samples
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Generative Models

+

Autoencoders, Variational
Autoencoders (VAEs)

Generative Adversarial
Networks (GANs)

Diffusion Models
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Autoencoders: background

● Unsupervised learning of a lower-dimensional feature 
representation from unlabeled data

● Encoder learns mapping 

where z is low-dim. latent space

Why we want a low-
dimensional latent space?
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Autoencoders: background

● How can we learn the latent space?

● Decoder learns mapping 

from the latent space z to a reconstructed observation 
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Autoencoders: background

● Train the model to use z to reconstruct the original x

● Loss is without labels
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Dimensionality of latent space

● Autoencoding is a form of compression

2D latent space 5D latent space GT
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Obstacles

● AE easily overfits and encoding in the latent space is 
meaningless. 

● Encoder and Decoder with sufficient capacity can learn even 
for the 1D latent space z.

Regularization on z

MIT course, Introduction to deep learning

http://introtodeeplearning.com/
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Regularization

● Continuity: 

points close in latent space - > similar content after decoding 

● Completeness:

sampling from latent space - > “meaningful” content after decoding

MIT course, Introduction to deep learning

http://introtodeeplearning.com/
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Regularization

● Contractive autoencoder (CAE)

● Denoising autoencoder (DAE)

● Variational autoencoder (VAE)
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● Traditional autoencoder

● Better think of probabilities –>  AE learns the means:  

Variational Autoencoder
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Variational Autoencoder

● VAE approximates

and learns both mean and standard deviation vectors

● Latent variable z is sampled from estimated  
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Variational Autoencoder

● Loss: 

e.g.

Inferred latent
distribution

Prior on latent
distribution
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Priors on the latent distribution

● q and p are normal distributions --> KL divergence has closed-
form expression
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VAE Computation Graph

● We cannot use backpropagation if z is sampled.
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Reparametrization Trick

● Sample an auxiliary variable

● Calculate:

● Then 
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Reparametrization Trick

Original form Reparametrized form

x

MIT course, Introduction to deep learning

http://introtodeeplearning.com/
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VAE Latent Perturbation

Smile

Head Pose
Kingma et al., VAE, 2014

https://arxiv.org/pdf/1312.6114.pdf
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Generative Adversarial Networks - GANs

● What if we just want to sample?
● Idea: Don’t explicitly model density, just sample
● Solution: Sample from something simple (white noise) and 

learn a transformation to the data distribution.  

Generator Network

noise
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Generative Adversarial Networks - GANs

● GAN: create a generative model by having two networks 
compete with each other.

  

Generator turns noise into an imitation
of data to try to trick the discriminator.

noise

Discriminator tries to identify real data

from fakes created by Generator.



23

Intuition behind GANs

Real data Fake data

MIT course, Introduction to deep learning

http://ml2.cz/files/lectures/animated_figs/gan_learning.gif
http://introtodeeplearning.com/
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Training GANs

● Adversarial objectives for D and G 

noise

G tries to synthesize fake 

instances that fool D.

D tries to identify the
synthesized instances.  
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Training GANs

● Loss:

D tries to identify the
synthesized instances.  

fake real

D(fake) = 0
D(real) = 1
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Training GANs

● Loss:

noise

G tries to synthesize fake 

instances that fool D.
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GANs are distribution transformers

MIT course, Introduction to deep learning

http://introtodeeplearning.com/
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GANs are distribution transformers

MIT course, Introduction to deep learning

http://introtodeeplearning.com/
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GANs are distribution transformers

MIT course, Introduction to deep learning

http://introtodeeplearning.com/
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GANs vs AEs

Sonderby et al., ICLR, 2017

MSE –
 
MAE – 

MAP – Adversarial loss

http://ml2.cz/files/lectures/animated_figs/SR_toy_2.gif
http://ml2.cz/files/lectures/animated_figs/SR_toy_1.gif
https://arxiv.org/pdf/1610.04490.pdf
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Diffusion Models

● Diffusion

● Forward process

Dickstein et al., 2015
Ho et al.,  2020

https://arxiv.org/pdf/1503.03585.pdf
https://arxiv.org/pdf/2006.11239.pdf
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Diffusion Model

● Forward process

● Reverse process

– Training (ML):  
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● Forward

reparametrization: 
● Reverse

● Training

or predict noise
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● Prediction of   or   is done by

U-Net(  ) with residual and attention blocks 

and   implemented as sinusoid positional encoding.
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Stable Diffusion Model

● Latent space
● Conditional diffusion (cross-attention) 

Rombach et al. LDM, 2022

https://arxiv.org/pdf/2112.10752.pdf
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DALL-E

Nichol et al. GLIDE, 2022

gradient scale

https://arxiv.org/pdf/2112.10741.pdf
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Negative Prompt
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detailed meadow with colorful flowers detailed meadow with colorful flowers 
–no blue
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