Strojové učení II

Generative Models

Institute of Information Theory and Automation of the AS CR

1

Supervised vs Unsupervised Learning

Supervised

- Data: (x,y)
 x...data, y...label
- Goal: learn function to map

 $x \to y$

• Examples: classification, regression, object detection, semantic segmentation, ...

Unsupervised

• Data: x

x...data, no labels!

- Goal: learn hidden (underlying) structure of the data
- Examples: clustering, feature or dimensionality reduction, ...

Generative Modeling

• Natural images lie on a manifold

Input samples

$$p_{\text{data}}(x)$$

• How to sample from this distribution?

Generative Modeling

• Take training samples from the data distribution and learn a mapping from a simple distribution (e.g. normal) to the data distribution such that

Input samples $p_{\mathrm{data}}(x)$

Generated samples $p_{\mathrm{model}}(x)$

G(∧) = ∧√ G

Generative Models

Autoencoders, Variational Autoencoders (VAEs)

Generative Adversarial Networks (GANs)

Diffusion Models

Autoencoders: background

• Unsupervised learning of a lower-dimensional feature representation from unlabeled data

• Encoder learns mapping $f(x, \phi) : x \to z$ where *z* is low-dim. latent space

Autoencoders: background

• How can we learn the latent space?

• **Decoder** learns mapping $g(z, \theta) : z \to \hat{x}$ from the latent space *z* to a reconstructed observation \hat{x}

Autoencoders: background

• Train the model to use *z* to reconstruct the original *x*

Loss is without labels

$$\min_{\phi,\psi} \sum_{i} L(x^{(i)})$$

Dimensionality of latent space

• Autoencoding is a form of compression

2D latent space

5D latent space

GT

Obstacles

- AE easily overfits and encoding in the latent space is meaningless.
- Encoder and Decoder with sufficient capacity can learn even for the 1D latent space *z*.

Regularization on z

Regularization

• Continuity:

points close in latent space - > similar content after decoding

• Completeness:

sampling from latent space - > "meaningful" content after decoding

Regularization

• Contractive autoencoder (CAE)

$$L(x) = \|x - g(f(x))\|^2 + \lambda \left\|\frac{\partial f(x)}{\partial x}\right\|_F^2$$

• Denoising autoencoder (DAE)

$$L(x) = ||x - g(f(x + \epsilon))||^2$$

• Variational autoencoder (VAE)

Variational Autoencoder

• Traditional autoencoder

• Better think of probabilities -> AE learns the means:

$$f(x) = \mathbb{E}_{q(z|x)}[z] \qquad g(z) = \mathbb{E}_{p(\hat{x}|z)}[\hat{x}]$$

Variational Autoencoder

• VAE approximates $q(z) \approx N(z|\mu, \sigma^2)$ and learns both mean and standard deviation vectors

• Latent variable z is sampled from estimated $q(z|x;\phi)$

Variational Autoencoder

• LOSS: $L(x, \phi, \theta) = \text{reconstruction loss} + \text{regularization term}$

Priors on the latent distribution $D_{KL}(q(z|x)||p(z))$

 q and p are normal distributions --> KL divergence has closedform expression

$$D_{KL}(N(z|\mu,\sigma^2)||N(z|0,1)) = \frac{1}{2}(\mu^2 + \sigma^2 - 1 - \log \sigma^2)$$

VAE Computation Graph

• We cannot use backpropagation if *z* is sampled.

Reparametrization Trick

- Sample an auxiliary variable $\epsilon \sim N(0,1)$
- Calculate: $z = \mu + \sigma \epsilon$
- Then $z \sim N(\mu, \sigma)$

Reparametrization Trick

VAE Latent Perturbation

Kingma et al., VAE, 2014

Generative Adversarial Networks - GANs

- What if we just want to sample?
- Idea: Don't explicitly model density, just sample
- Solution: Sample from something simple (white noise) and learn a transformation to the data distribution.

Generative Adversarial Networks - GANs

• GAN: create a generative model by having two networks compete with each other.

Intuition behind GANs

MIT course, Introduction to deep learning

Training GANs

• Adversarial objectives for D and G

 $\min_{G} \max_{D} \mathbb{E}_{z,x}[\log(1 - D(G(z))) + \log D(x)]$

Training GANs

Loss:

Loss:

 $\min_{G} \mathbb{E}_{z,x}[\log(1 - D(G(z))) + \log D(x)]$

G tries to synthesize fake instances that fool D.

GANs are distribution transformers

GANs are distribution transformers

GANs are distribution transformers

MIT course, Introduction to deep learning

GANs vs AEs

Sonderby et al., ICLR, 2017

Diffusion Models

Dickstein et al., 2015 Ho et al., 2020

Diffusion

• Forward process

 $q(x_t|x_{t-1}) \equiv N(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I)$

 $\bar{\alpha}_t = \prod (1 - \beta_i)$

i=1

 \mathbf{X}_T

Diffusion Model

• Forward

$$q(x_t | x_{t-1}) = N(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I)$$

$$q(x_t | x_0) = N(x_t; \sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t) I)$$

$$\bar{\alpha}_t = \prod_{i=1}^t (1 - \beta_i)$$

reparametrization: $x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$ $\epsilon \sim N(0, I)$

Reverse

 $p(x_{t-1}|x_t) = N(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$

• Training $\min_{\theta} \mathbb{E}_{q(x_0)}[-\log p(x_0)] = \dots$ $\min_{\theta} \mathbb{E}_{x_0,\epsilon,t} \left[\frac{1}{2\|\Sigma_{\theta}\|^2} \Big\| \frac{1}{\sqrt{1-\beta_t}} \Big(x_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon \Big) - \mu_{\theta}(x_t,t) \Big\|^2 \right]$ or predict noise $\min_{\theta} \mathbb{E}_{x_0,\epsilon,t} \left[\frac{1}{2\|\Sigma_{\theta}\|^2} \|\epsilon - \epsilon_{\theta}(x_t,t)\|^2 \right]$

• Prediction of $\mu_{\theta}(x_t, t)$ or $\epsilon_{\theta}(x_t, t)$ is done by

U-Net(θ) with residual and attention blocks and t implemented as sinusoid positional encoding.

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T,, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

Stable Diffusion Model

- Latent space
- Conditional diffusion (cross-attention)

Negative Prompt

detailed meadow with colorful flowers

detailed meadow with colorful flowers -no blue

